MicroRNA-340-mediated degradation of microphthalmia-associated transcription factor (MITF) mRNA is inhibited by coding region determinant-binding protein (CRD-BP).

نویسندگان

  • Srikanta Goswami
  • Rohinton S Tarapore
  • Ashley M Poenitzsch Strong
  • Jessica J TeSlaa
  • Yevgenya Grinblat
  • Vijayasaradhi Setaluri
  • Vladimir S Spiegelman
چکیده

Alternative cleavage and polyadenylation generates multiple transcript variants producing mRNA isoforms with different length 3'-UTRs. Alternative cleavage and polyadenylation enables differential post-transcriptional regulation via the availability of different cis-acting elements in 3'-UTRs. Microphthalmia-associated transcription factor (MITF) is a master regulator of melanocyte development and melanogenesis. This central transcription factor is also implicated in melanoma development. Here, we show that melanoma cells favor the expression of MITF mRNA with a shorter 3'-UTR. We also establish that this isoform is regulated by a micro RNA (miRNA/miR), miR-340. miR-340 interacts with two of its target sites on the MITF 3'-UTR, causing mRNA degradation as well as decreased expression and activity of MITF. Conversely, the RNA-binding protein, coding region determinant-binding protein, was shown to be highly expressed in melanoma, directly binds to the 3'-UTR of MITF mRNA, and prevents the binding of miR-340 to its target sites, resulting in the stabilization of MITF transcripts, elevated expression, and transcriptional activity of MITF. This regulatory interplay between RNA-binding protein and miRNA highlights an important mechanism for the regulation of MITF in melanocytes and malignant melanomas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing the Coding Region Determinant-Binding Protein (CRD-BP)-Microphthalmia-associated Transcription Factor (MITF) mRNA interaction

Coding region determinant-binding protein (CRD-BP) binds to the 3'-UTR of microphthalmia-associated transcription factor (MITF) mRNA to prevent its targeted degradation by miR-340. Here, we aim to further understand the molecular interaction between CRD-BP and MITF RNA. Using point mutation in the GXXG motif of each KH domains, we showed that all four KH domains of CRD-BP are important for thei...

متن کامل

Coptis chinensis inhibits melanogenesis increasing miR-340-mediated suppression of microphathalmia-associated transcription factor

Background: Coptis chinensis (C. chinensis) contains various antioxidants, including berberine, epiberberlin, ferulic acid, magnoflorine, palmatine, and worenine, which have antibacterial, anti-inflammatory, haemostatic, hypotensive, and anticancer effects. In the present study, the melanogenesis-inhibiting effects of C. chinensis were investigated and the molecular mechanisms were elucidated. ...

متن کامل

miRNA-340 inhibits osteoclast differentiation via repression of MITF

Many miRNAs play critical roles in modulating various biological processes of osteoclast differentiation and function. Microphthalmia-associated transcription factor (MITF), a target of miR-340, served as pivotal transcription factor involved in osteoclast differentiation. However, the role of miR-340 and MITF during osteoclast differentiation has not yet been clearly established. Tartrate-resi...

متن کامل

CRD-BP protects the coding region of betaTrCP1 mRNA from miR-183-mediated degradation.

miRNAs are largely known to base pair with the 3'UTR of target mRNAs, downregulating their stability and translation. mRNA of betaTrCP1 ubiquitin ligase is very unstable, but unlike the majority of mRNAs where 3'UTR determines the rate of mRNA turnover, betaTrCP1 mRNA contains cis-acting destabilizing elements within its coding region. Here we show that degradation of mRNA of betaTrCP1 is miRNA...

متن کامل

Reduced MiR-675 in exosome in H19 RNA-related melanogenesis via MITF as a direct target.

H19 non-coding RNA downregulation stimulates melanogenesis in melasma patients. However, its mechanism is unclear. In this study, the potential role of a H19 microRNA, miR-675, in melanogenesis was examined. Real-time PCR using cultured normal human skin keratinocytes, melanocytes, and fibroblasts with or without H19 knockdown showed accompanying changes between expression levels of H19 and tho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 290 1  شماره 

صفحات  -

تاریخ انتشار 2015